Filters
Question type

Given the following premises: 1) ∼∼N 2) K ⊃ ∼N 3) ∼N ∨ (K • S)


A) (∼N ∨ K) • S 3, Assoc
B) K 1, 2, MT
C) N ⊃ ∼K 2, Trans
D) K • S 1, 3, DS
E) (∼N • K) ∨ (∼N • S) 3, Dist

Correct Answer

verifed

verified

Use conditional proof: 1.G ⊃ (E ⊃ N) 2.H ⊃ (∼N ⊃ E)/ G ⊃ (H ⊃ N)

Correct Answer

Answered by ExamLex AI

Answered by ExamLex AI

To prove the argument using conditional ...

View Answer

Use an ordinary proof (not conditional or indirect proof): 1.K ∨ (S • N) 2.∼(K • ∼Q) 3.∼(N • ∼Q)/ Q

Correct Answer

Answered by ExamLex AI

Answered by ExamLex AI

To prove Q using an ordinary proof with ...

View Answer

Given the following premises: 1) R ⊃ (∼B ⊃ F) 2) ∼U ⊃ B 3) ∼B


A) F 1, 3, MP
B) (R ⊃ ∼B) ⊃ F 1, Assoc
C) R ⊃ (∼F ⊃ ∼∼B) 1, Trans
D) U 2, 3, MT
E) ∼B ⊃ U 2, Trans

Correct Answer

verifed

verified

Given the following premises: 1) ∼R ∨ ∼R 2) R ∨ (∼J • ∼H) 3) ∼R ⊃ (H • B)


A) ∼J • ∼H 1, 2, DS
B) R 1, DN
C) R ∨ ∼(J ∨ H) 2, DM
D) (R ∨ ∼J) • ∼H 2, Assoc
E) H • B 1, 3, MP

Correct Answer

verifed

verified

Given the following premises: 1) F ∨ S 2) ∼S 3) (S ⊃ W) • (F ⊃ N)


A) F 1, 2, DS
B) S ⊃ W 3, Simp
C) ∼F ⊃ S 1, Impl
D) F ⊃ N 3, Simp
E) W ∨ N 1, 3, CD

Correct Answer

verifed

verified

Given the following premises: 1) A 2) G ⊃ (A ⊃ ∼L) 3) ∼A ∨ ∼G


A) A ∨ G 3, DN
B) (G ⊃ A) ⊃ ∼L 2, Assoc
C) ∼L 1, 2, MP
D) ∼G 1, 3, DS
E) G ⊃ (∼∼L ⊃ ∼A) 2, Trans

Correct Answer

verifed

verified

Given the following premises: 1) S ⊃ (∼∼T • ∼∼C) 2) (S • Q) ∨ C 3) ∼C


A) S 2, Simp
B) S ⊃ (T • C) 1, DN
C) S ⊃ ∼∼T 1, Simp
D) S ⊃ (T • ∼∼C) 1, DN
E) S • Q 2, 3, DS

Correct Answer

verifed

verified

Given the following premises: 1) ∼(∼H • J) 2) K ∨ (∼H • J) 3) (M ∨ M) ⊃ (∼H • J)


A) (K ∨ ∼H) • (K ∨ J) 2, Dist
B) ∼K ⊃ (∼H • J) 2, Impl
C) K 1, 2, DS
D) H ∨ ∼J 1, DM
E) ∼M 1, 3, MT

Correct Answer

verifed

verified

Given the following premises: 1) D ⊃ H 2) ∼D 3) ˜(D • S)


A) ∼H 1, 2, MT
B) ∼D ∨ (D ⊃ H) 2, Add
C) H ⊃ D 1, Com
D) S 2, 3, DS
E) ∼D • ∼S 3, DM

Correct Answer

verifed

verified

Given the following premises: 1) ∼U ⊃ (S • K) 2) R ⊃ (∼U • ∼U) 3) S ≡ ∼U


A) (∼U • S) ⊃ K 1, Exp
B) R ⊃ U 2, DN
C) R ⊃ ∼U 2, Taut
D) R ⊃ (S • K) 1, 2, HS
E) (S ⊃ U) • (∼U ⊃ ∼S) 3, Equiv

Correct Answer

verifed

verified

Given the following premises: 1) K ∨ ∼H 2) (K ∨ ∼H) ⊃ (B ⊃ J) 3) J ⊃ D


A) H ⊃ K 1, Impl
B) B ⊃ D 2, 3, HS
C) K 1, Simp
D) D ⊃ J 3, Trans
E) B ⊃ J 1, 2, MP

Correct Answer

verifed

verified

Given the following premises: 1) R • ∼S 2) R ⊃ ∼(S • ∼F) 3) ∼S ⊃ (F • N)


A) (∼S • F) ⊃ N 3, Exp
B) ∼S 1, Simp
C) F • N 1, 3, MP
D) R ⊃ (∼S ∨ ∼∼F) 2, DM
E) (∼S ⊃ F) • (∼S ⊃ N) 3, Dist

Correct Answer

verifed

verified

Given the following premises: 1) T ⊃ (G ∨ G) 2) ∼P ⊃ T 3) F ⊃ (B ⊃ ∼P)


A) F ⊃ (P ⊃ ∼B) 3, Trans
B) (F ⊃ B) ⊃ ∼P 3, Assoc
C) F ⊃ (∼B ∨ ∼P) 3, Impl
D) B ⊃ T 2, 3, HS
E) ∼P ⊃ G 1, 2, HS

Correct Answer

verifed

verified

Use an ordinary proof (not conditional or indirect proof): 1.∼N ⊃ (∼R ⊃ C) 2.R ⊃ N 3.∼C/ N

Correct Answer

Answered by ExamLex AI

Answered by ExamLex AI

To prove that N is true using an ordinar...

View Answer

Given the following premises: 1) P ⊃ L 2) ∼(J • O) 3) (L ⊃ A) ⊃ (J • O)


A) L ⊃ P 1, Com
B) ∼J • ∼O 2, DM
C) P ⊃ A 1, 3, HS
D) ∼(L ⊃ A) 2, 3, MT
E) ∼J 2, Simp

Correct Answer

verifed

verified

Given the following premises: 1) E ⊃ (B • J) 2) (J • B) ⊃ ∼L 3) L


A) E ⊃ ∼L 1, 2, HS
B) ∼(J • B) 2, 3, MT
C) (B • J) ⊃ ∼L 2, Com
D) J 2, Simp
E) (E ⊃ B) • (E ⊃ J) 1, Dist

Correct Answer

verifed

verified

Given the following premises: 1) (S ⊃ R) ⊃ (J ⊃ T) 2) (P ⊃ R) ⊃ (S ⊃ R) 3) R ⊃ J


A) (P ⊃ R) ⊃ (J ⊃ T) 1, 2, HS
B) S ⊃ J 1, 3, HS
C) P ⊃ J 2, 3, HS
D) (S ⊃ R) • (P ⊃ R) 1, 2, Conj
E) R ⊃ T 1, 3, HS

Correct Answer

verifed

verified

Given the following premises: 1) Q ⊃ (A ∨ ∼T) 2) T 3) A ∨ ∼T


A) Q ⊃ (∼∼A ∨ ∼T) 1, DN
B) (A ∨ ∼T) ⊃ Q 1, Com
C) (Q ⊃ A) ∨ ∼T 1, Assoc
D) Q 1, 3, MP
E) A 2, 3, DS

Correct Answer

verifed

verified

Given the following premises: 1) ∼T ⊃ E 2) ∼K ⊃ (∼T ∨ ∼T) 3) M ⊃ (∼K ∨ ∼L)


A) (M ⊃ ∼K) ∨ L 3, Assoc
B) M ⊃ (K ⊃ ∼L) 3, Impl
C) M ⊃ (K ∨ L) 3, DN
D) ∼K ⊃ T 2, Taut
E) ∼K ⊃ E 1, 2, HS

Correct Answer

verifed

verified

Showing 21 - 40 of 76

Related Exams

Show Answer