Filters
Question type

Find the exact slope of the tangent line to y=sinhxy = \sinh x when x = 1.

Correct Answer

verifed

verified

With a yearly inflation rate of 7%, prices are described by P=P0(1.07)P = P _ { 0 } ( 1.07 ) ^ { \dagger } , where P0P _ { 0 } is the price in dollars when t = 0 and t is time in years.If P0P _ { 0 } = 1.3, how fast (in cents/year)are prices rising when t = 19? Round to 1 decimal place.

Correct Answer

verifed

verified

A particle moves in such a way that x(t)=2t2+8sintx ( t ) = 2 t ^ { 2 } + 8 \sin t .What is the instantaneous rate of change at t = 0?

Correct Answer

verifed

verified

What is the instantaneous rate of change of the function f(x)=ex2f ( x ) = e ^ { - x ^ { 2 } } at x = 2? Round to 3 decimal places.

Correct Answer

verifed

verified

The derivative of sin2x\sin \frac { 2 } { x } is 2cos2x2 \cos \frac { 2 } { x } .

Correct Answer

verifed

verified

The volume of a certain tree is given by V=112πC2hV = \frac { 1 } { 12 \pi } C ^ { 2 } h , where C is the circumference of the tree at the ground level and h is the height of the tree.If C is 4 feet and growing at the rate of 0.25 feet per year, and if h is 25 feet and is growing at 5 feet per year, find the rate of growth of the volume V (in ft3/yr).Round to 2 decimal places.

Correct Answer

verifed

verified

Given f(x) =exf ( x ) = e ^ { x } , g(x) =5xg ( x ) = 5 ^ { x } , and h(x) = g(x) /f(x) , find h(x) h ^ { \prime \prime } ( x ) .


A) 5xex(ln5+1) 25 ^ { x } e ^ { - x } ( \ln 5 + 1 ) ^ { 2 }
B) 5xex(ln51) 25 ^ { x } e ^ { - x } ( \ln 5 - 1 ) ^ { 2 }
C) 5xex(ln5) 25 ^ { x } e ^ { - x } ( \ln 5 ) ^ { 2 }
D) x(x1) 5x2ex2(ln5) 2- x ( x - 1 ) 5 ^ { x - 2 } e ^ { - x - 2 } ( \ln 5 ) ^ { 2 }

Correct Answer

verifed

verified

Differentiate ddx[7e2x2+8x]\frac { d } { d x } \left[ 7 e ^ { 2 x ^ { 2 } + 8 x } \right] .


A) 7(4x+8) e2x2+8x7 ( 4 x + 8 ) e ^ { 2 x ^ { 2 } + 8 x }
B) 7e2x2+8x7 e ^ { 2 x ^ { 2 } + 8 x }
C) 7ln(2x2+8x) e2x2+8x7 \ln \left( 2 x ^ { 2 } + 8 x \right) e ^ { 2 x ^ { 2 } + 8 x }
D) 7(2x2+8x) e2x2+8x17 \left( 2 x ^ { 2 } + 8 x \right) e ^ { 2 x ^ { 2 } + 8 x - 1 }

Correct Answer

verifed

verified

A table of values for functions F and G near x = 3 is given below.If H(x)= F(x)/G(x), estimate H'(3)by using the quotient rule and then using right-hand estimates for FF ^ { \prime } and GG ^ { \prime } .Round to 2 decimal places. x2.93.03.1F(x)7.788.3G(x)2.221.8\begin{array} { c c c c } x & 2.9 & 3.0 & 3.1 \\F ( x ) & 7.7 & 8 & 8.3 \\G ( x ) & 2.2 & 2 & 1.8\end{array}

Correct Answer

verifed

verified

Find a differentiation formula for y=cot(θ)y = \cot ( \theta ) .

Correct Answer

verifed

verified

Differentiate h(θ) =5θsin(θ2) h ( \theta ) = 5 \theta \sin \left( \theta ^ { 2 } \right) .


A) 5cos(2θ) 5 \cos ( 2 \theta )
B) 5θcos(θ2) +5sin(θ2) 5 \theta \cos \left( \theta ^ { 2 } \right) + 5 \sin \left( \theta ^ { 2 } \right)
C) 10θ2cos(θ2) +5sin(θ2) 10 \theta ^ { 2 } \cos \left( \theta ^ { 2 } \right) + 5 \sin \left( \theta ^ { 2 } \right)
D) 10θ2cos(θ2) +sin(θ2) - 10 \theta ^ { 2 } \cos \left( \theta ^ { 2 } \right) + \sin \left( \theta ^ { 2 } \right)

Correct Answer

verifed

verified

Differentiate f(y) =ln(2+y2y) f ( y ) = \ln \left( \frac { 2 + y } { 2 - y } \right) .


A) 2y2+y\frac { 2 - y } { 2 + y }
B) 2y2+y- \frac { 2 - y } { 2 + y }
C) 4(2y) 2\frac { 4 } { ( 2 - y ) ^ { 2 } }
D) 4(2+y) (2y) \frac { 4 } { ( 2 + y ) ( 2 - y ) }

Correct Answer

verifed

verified

Use the product rule to write a proof of the constant multiple rule: ddxcf(x)=cddf(x)\frac { d } { d x } c f ( x ) = c \frac { d } { d } f ( x ) .

Correct Answer

verifed

verified

Let c be any constan...

View Answer

Find ddx(1+89x) \frac { d } { d x } \left( \sqrt { 1 + 8 ^ { 9 x } } \right) .


A) 9ln889x\sqrt { 9 \cdot \ln 8 \cdot 8 ^ { 9 x } }
B) 9x89x1\sqrt { 9 x \cdot 8 ^ { 9 x - 1 } }
C) 9ln889x21+89x\frac { 9 \cdot \ln 8 \cdot 8 ^ { 9 x } } { 2 \sqrt { 1 + 8 ^ { 9 x } } }
D) 9x89x121+89x\frac { 9 x \cdot 8 ^ { 9 x - 1 } } { 2 \sqrt { 1 + 8 ^ { 9 x } } }

Correct Answer

verifed

verified

If p(x)= ln((x - a)(x - b)(x - c))and a, b, c are constants, then p(x)=1xa+1xb+1xcp ^ { \prime } ( x ) = \frac { 1 } { x - a } + \frac { 1 } { x - b } + \frac { 1 } { x - c } .

Correct Answer

verifed

verified

Given y=4x+5xy = 4 ^ { x } + 5 ^ { x } , find y111y ^ { 111 } .

Correct Answer

verifed

verified

Find the critical number(s)of the curve y=aebx(1ebx)y = a e ^ { b x } \left( 1 - e ^ { b x } \right) .

Correct Answer

verifed

verified

Consider the following table of data for the function f. x5.05.15.25.35.4f(x)9.28.88.37.77.0\begin{array} { c c c c c c } x & 5.0 & 5.1 & 5.2 & 5.3 & 5.4 \\f ( x ) & 9.2 & 8.8 & 8.3 & 7.7 & 7.0\end{array} Suppose g is a function such that g(5.1)= 9 and g'(5.1)= 3.Find h'(5.1)where h(x)= f(x)g(x).Use the right-hand estimate for f(5.1)f ^ { \prime } ( 5.1 ) .Round to 2 decimal places.

Correct Answer

verifed

verified

Find the derivative of g(x) =3x1x3+3xg ( x ) = 3 x - \frac { 1 } { \sqrt [ 3 ] { x } } + 3 ^ { x } .


A) 3+13x4/3+(ln3) 3x3 + \frac { 1 } { 3 x ^ { 4 / 3 } } + ( \ln 3 ) 3 ^ { x }
B) 313x4/3+(ln3) 3x3 - \frac { 1 } { 3 x ^ { 4 / 3 } } + ( \ln 3 ) 3 ^ { x }
C) 3+13x+x3x13 + \frac { 1 } { 3 \sqrt { x } } + x 3 ^ { x - 1 }
D) 313x+x3x13 - \frac { 1 } { 3 \sqrt { x } } + x 3 ^ { x - 1 }

Correct Answer

verifed

verified

Find the derivative of h(t) =tπ4+(π4) t+πt4h ( t ) = t ^ { \pi ^ { 4 } } + \left( \pi ^ { 4 } \right) ^ { t } + \pi t ^ { 4 } .


A) π4t(π41) +t(π4) t1+4πt3\pi ^ { 4 } t ^ { \left( \pi ^ { 4 } - 1 \right) } + t \left( \pi ^ { 4 } \right) ^ { t - 1 } + 4 \pi t ^ { 3 }
B) π4t(π41) +(π4) +ln(π4) +4π3\pi ^ { 4 } t ^ { \left( \pi ^ { 4 } - 1 \right) } + \left( \pi ^ { 4 } \right) ^ { + } \ln \left( \pi ^ { 4 } \right) + 4 \pi ^ { 3 }
C) t(π41) lnt+(π4) tln(π4) +4πt4lntt ^ { \left( \pi ^ { 4 } - 1 \right) } \ln t + \left( \pi ^ { 4 } \right) ^ { t } \ln \left( \pi ^ { 4 } \right) + 4 \pi t ^ { 4 } \ln t
D) 4tπ3+4t(π3) t1+4πt4lnt4 t ^ { \pi ^ { 3 } } + 4 t \left( \pi ^ { 3 } \right) ^ { t - 1 } + 4 \pi t ^ { 4 } \ln t

Correct Answer

verifed

verified

Showing 121 - 140 of 175

Related Exams

Show Answer