Filters
Question type

Study Flashcards

Find the average value of the function f over the given region. -f(x, y) = 8x + 5y over the triangle with vertices (0, 0) , (2, 0) , and (0, 7) .


A) 233\frac { 23 } { 3 }
B) 7
C) 163\frac { 16 } { 3 }
D) 17

Correct Answer

verifed

verified

Solve the problem. -Evaluate 224y24y209x2y2dzdxdy\int _ { - 2 } ^ { 2 } \int _ { - \sqrt { 4 - y ^ { 2 } } } ^ { \sqrt { 4 - y ^ { 2 } } } \int _ { 0 } ^ { \sqrt { 9 - x ^ { 2 } - y ^ { 2 } } } d z d x d y by transforming to cylindrical or spherical coordinates.


A) 2π3(9(5) 3/2) \frac { 2 \pi } { 3 } \left( 9 - ( 5 ) ^ { 3 / 2 } \right)
B) 2π3(27(5) 3/2) \frac { 2 \pi } { 3 } \left( 27 - ( 5 ) ^ { 3 / 2 } \right)
C) 4π3(9(5) 3/2) \frac { 4 \pi } { 3 } \left( 9 - ( 5 ) ^ { 3 / 2 } \right)
D) 4π3(27(5) 3/2) \frac { 4 \pi } { 3 } \left( 27 - ( 5 ) ^ { 3 / 2 } \right)

Correct Answer

verifed

verified

Solve the problem. -Find the centroid of the rectangular solid defined by 0x8,0y7,0z90 \leq x \leq 8,0 \leq y \leq 7,0 \leq z \leq 9 .


A) xˉ=83,yˉ=73,zˉ=3\bar { x } = \frac { 8 } { 3 } , \bar { y } = \frac { 7 } { 3 } , \bar { z } = 3
B) xˉ=8,yˉ=7,zˉ=9\bar { x } = 8 , \bar { y } = 7 , \bar { z } = 9
C) xˉ=2,yˉ=74,zˉ=94\bar { x } = 2 , \bar { y } = \frac { 7 } { 4 } , \bar { z } = \frac { 9 } { 4 }
D) xˉ=4,yˉ=72,zˉ=92\bar { x } = 4 , \bar { y } = \frac { 7 } { 2 } , \bar { z } = \frac { 9 } { 2 }

Correct Answer

verifed

verified

Provide an appropriate response. -x = 7u cos 10v, y = 7u sin 10v, z = 3w


A) 2100u
B) 1470u
C) 2100v
D) 1470v

Correct Answer

verifed

verified

Evaluate the integral. - 0π/20π/202cosφϱ2sinφdφdθdφ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 2 \cos \varphi } \varrho ^ { 2 } \sin \varphi \mathrm { d } \varphi \mathrm { d } \theta \mathrm { d } \varphi


A) 49π2\frac { 4 } { 9 } \pi ^ { 2 }
B) 13π\frac { 1 } { 3 } \pi
C) 49π\frac { 4 } { 9 } \pi
D) 13π2\frac { 1 } { 3 } \pi ^ { 2 }

Correct Answer

verifed

verified

Solve the problem. -Find the center of mass of a thin infinite region in the first quadrant bounded by the coordinate axes and the curve y=e4xy = e ^ { - 4 x } if δ(x,y) =xy\delta ( x , y ) = x y .


A) xˉ=16,yˉ=29\bar { x } = \frac { 1 } { 6 } , \bar { y } = \frac { 2 } { 9 }
B) xˉ=14,yˉ=827\bar { x } = \frac { 1 } { 4 } , \bar { y } = \frac { 8 } { 27 }
C) xˉ=14,yˉ=29\bar { x } = \frac { 1 } { 4 } , \bar { y } = \frac { 2 } { 9 }
D) xˉ=16,yˉ=827\bar { x } = \frac { 1 } { 6 } , \bar { y } = \frac { 8 } { 27 }

Correct Answer

verifed

verified

Evaluate the integral by changing the order of integration in an appropriate way. - 050x/1050ze(y2+z2) dzdydx\int _ { 0 } ^ { 50 } \int _ { x / 10 } ^ { 5 } \int _ { 0 } ^ { \infty } z e ^ { - \left( y ^ { 2 } + z ^ { 2 } \right) } d z d y d x


A) 5(1e50) 5 \left( 1 - e ^ { - 50 } \right)
B) 5(1e25) 5 \left( 1 - \mathrm { e } ^ { - 25 } \right)
C) 52(1e50) \frac { 5 } { 2 } \left( 1 - \mathrm { e } ^ { - 50 } \right)
D) 52(1e25) \frac { 5 } { 2 } \left( 1 - \mathrm { e } ^ { - 25 } \right)

Correct Answer

verifed

verified

Change the Cartesian integral to an equivalent polar integral, and then evaluate. - 9081x2011+x2+y2dydx\int _ { - 9 } ^ { 0 } \int _ { - \sqrt { 81 - x ^ { 2 } } } ^ { 0 } \frac { 1 } { 1 + \sqrt { x ^ { 2 } + y ^ { 2 } } } d y d x


A) π(9+ln10) 2\frac { \pi ( 9 + \ln 10 ) } { 2 }
B) π(9+ln10) 4\frac { \pi ( 9 + \ln 10 ) } { 4 }
C) π(9ln10) 4\frac { \pi ( 9 - \ln 10 ) } { 4 }
D) π(9ln10) 2\frac { \pi ( 9 - \ln 10 ) } { 2 }

Correct Answer

verifed

verified

Evaluate the integral by changing the order of integration in an appropriate way. - 06407x34zy4+1dydzdx\int _ { 0 } ^ { 64 } \int _ { 0 } ^ { 7 } \int _ { \sqrt [ 3 ] { x } } ^ { 4 } \frac { z } { y ^ { 4 } + 1 } d y d z d x


A) 498ln65\frac { 49 } { 8 } \ln 65
B) 498ln257\frac { 49 } { 8 } \ln 257
C) 494ln65\frac { 49 } { 4 } \ln 65
D) 494ln257\frac { 49 } { 4 } \ln 257

Correct Answer

verifed

verified

Find the volume of the indicated region. -the region bounded by the cylinders r = 5, r = 8 and the planes z = 7, z = 10


A) 234π234 \pi
B) 468π468 \pi
C) 351π351 \pi
D) 117π117 \pi

Correct Answer

verifed

verified

Use a spherical coordinate integral to find the volume of the given solid. -the solid between the spheres ϱ=3cosφ\varrho = 3 \cos \varphi and ϱ=7cosφ\varrho = 7 \cos \varphi


A) 3163π\frac { 316 } { 3 } \pi
B) 158π158 \pi
C) 79π79 \pi
D) 1583π\frac { 158 } { 3 } \pi

Correct Answer

verifed

verified

Write an equivalent double integral with the order of integration reversed. - 3710x7dydx\int _ { 3 } ^ { 7 } \int _ { 10 - x } ^ { 7 } d y d x


A) 3410y7dxdy\int _ { 3 } ^ { 4 } \int _ { 10 - y } ^ { 7 } d x d y
B) 3710y7dxdy\int _ { 3 } ^ { 7 } \int _ { 10 - y } ^ { 7 } d x d y
C) 377y4dxdy\int _ { 3 } ^ { 7 } \int _ { 7 - y } ^ { 4 } d x d y
D) 347y4dxdy\int _ { 3 } ^ { 4 } \int _ { 7 - y } ^ { 4 } d x d y

Correct Answer

verifed

verified

Find the average value of F(x, y, z) over the given region. -F(x, y, z) = 10x over the cube in the first octant bounded by the coordinate planes and the planes x = 5, y = 5, z = 5


A) 250
B) 1250
C) 25
D) 125

Correct Answer

verifed

verified

Evaluate the improper integral. - 0360100dxdyxy\int _ { 0 } ^ { 36 } \int _ { 0 } ^ { 100 } \frac { d x d y } { \sqrt { x y } }


A) 40
B) 240
C) 24
D) 360

Correct Answer

verifed

verified

Use the given transformation to evaluate the integral. - u=2x+yz,v=x+y+z,w=x+y+2z(2x+yz) (zx+y) dxdydz\begin{aligned}u = & 2 x + y - z , v = - x + y + z , w = - x + y + 2 z \\& \iiint ( 2 x + y - z ) ( z - x + y ) d x d y d z\end{aligned} where RR is the parallelepiped bounded by the planes 2x+yz=2,2x+yz=6,x+y+z=3,x+y+z=42 x + y - z = 2,2 x + y - z = 6 , - x + y + z = 3 , - x + y + z = 4 , x+y+2z=6,x+y+2z=8- x + y + 2 z = 6 , - x + y + 2 z = 8


A) 2243\frac { 224 } { 3 }
B) 1123\frac { 112 } { 3 }
C) 336
D) 672

Correct Answer

verifed

verified

Solve the problem. -Find the moment of inertia about the z-axis of a thick-walled right circular cylinder bounded on the inside by the cylinder r = 1, on the outside by the cylinder r = 2, and on the top and bottom by the planes Z = 7 and z = 11.


A) 30π30 \pi
B) 15π15 \pi
C) 32π32 \pi
D) 60π60 \pi

Correct Answer

verifed

verified

Evaluate the integral. - 244π10π0zrzdrdθdz\int _ { 2 } ^ { 4 } \int _ { 4 \pi } ^ { 10 \pi } \int _ { 0 } ^ { \mathrm { z } } \frac { \mathrm { r } } { \mathrm { z } } \mathrm { dr } \mathrm { d } \theta \mathrm { dz }


A) 36π36 \pi
B) 12π12 \pi
C) 24π24 \pi
D) 18π18 \pi

Correct Answer

verifed

verified

Solve the problem. -Find the moment of inertia about the yy -axis of the thin infinite region of constant density δ=3\delta = 3 in the first quadrant bounded by the coordinate axes and the curve y=e7xy = e ^ { - 7 x } .


A) 9343\frac { 9 } { 343 }
B) 1343\frac { 1 } { 343 }
C) 6343\frac { 6 } { 343 }
D) 3686\frac { 3 } { 686 }

Correct Answer

verifed

verified

Express the area of the region bounded by the given line(s) and/or curve(s) as an iterated double integral. -The parabola y=x2y = x ^ { 2 } and the line y=8x+20y = - 8 x + 20


A) 02208x+x2dydx\int _ { 0 } ^ { 2 } \int _ { 20 } ^ { - 8 x + x ^ { 2 } } d y d x
B) 102x28x+20dydx\int _ { - 10 } ^ { 2 } \int _ { x ^ { 2 } } ^ { - 8 x + 20 } d y d x
C) 10208x+20x2dxdy\int _ { - 10 } ^ { 2 } \int _ { 0 } ^ { - 8 x + 20 - x ^ { 2 } } d x d y
D) 02x28x+20dydx\int _ { 0 } ^ { 2 } \int _ { x ^ { 2 } } ^ { - 8 x + 20 } d y d x

Correct Answer

verifed

verified

Find the volume of the indicated region. -the region enclosed by the cone z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } between the planes z=4z = 4 and z=10z = 10


A) 234
B) 312π312 \pi
C) 234π234 \pi
D) 312

Correct Answer

verifed

verified

Showing 41 - 60 of 435

Related Exams

Show Answer