Filters
Question type

Use cylindrical coordinates to evaluate zx2+y2dV\iiint _ { z } \sqrt { x ^ { 2 } + y ^ { 2 } } d V where EE is the region that lies inside the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 and between the planes z=6z = - 6 and z=5z = 5 . Round the answer to two decimal places.

Correct Answer

verifed

verified

Use polar coordinates to find the volume of the solid under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and above the disk x2+y24x ^ { 2 } + y ^ { 2 } \leq 4 .

Correct Answer

verifed

verified

Use spherical coordinates to evaluate Bx2+y2+z2dV\iiint _ { B } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d V , where BB is the ball x2+y2+z210x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 10 .


A) 10000π10000 \pi
B) 10π10 \pi
C) 1000π1000 \pi
D) 2000π2000 \pi

Correct Answer

verifed

verified

Find the area of the surface SS where SS is the part of the surface x=yzx = y z that lies inside the cylinder y2+z2=25y ^ { 2 } + z ^ { 2 } = 25 .

Correct Answer

verifed

verified

 Find the area of the surface. The part of the surface z=xy that lies within the cylinder x2+y2=25\text { Find the area of the surface. The part of the surface } z = x y \text { that lies within the cylinder } x ^ { 2 } + y ^ { 2 } = 25 \text {. }

Correct Answer

verifed

verified

Use polar coordinates to find the volume of the solid bounded by the paraboloid z=76x26y2z = 7 - 6 x ^ { 2 } - 6 y ^ { 2 } and the plane z=1z = 1 .


A) 6π6 \pi
B) 13π13 \pi
C) 3π3 \pi
D) 4.5π4.5 \pi
E) 2π2 \pi

Correct Answer

verifed

verified

Find the mass and the center of mass of the lamina occupying the region RR , where RR is the triangular region with vertices (0,0),(2,5)( 0,0 ) , ( 2,5 ) , and (4,0)( 4,0 ) , and having the mass density ρ(x,y)=x\rho ( x , y ) = x .

Correct Answer

verifed

verified

Find the center of mass of a homogeneous solid bounded by the paraboloid z=25x2y2z = 25 - x ^ { 2 } - y ^ { 2 } and z=0z = 0 .

Correct Answer

verifed

verified

Use the given transformation to evaluate the integral. RxydA\iint _ { R } x y d A , where RR is the region in the first quadrant bounded by the lines y=x,y=3xy = x , y = 3 x and the hyperbolas xy=2,xy=4;x=uv,y=vx y = 2 , x y = 4 ; x = \frac { u } { v } , y = v .

Correct Answer

verifed

verified

Use cylindrical coordinates to evaluate the triple integral EydV\iiint _ { E } y d V where EE is the solid that lies between the cylinders x2+y2=3x ^ { 2 } + y ^ { 2 } = 3 and x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 above the xyx y -plane and below the plane z=x+4z = x + 4 .

Correct Answer

verifed

verified

Evaluate the iterated integral by converting to polar coordinates. Round the answer to two decimal places. 55025y2(x2+y2) 3/2dxdy.\int _ { - 5 } ^ { 5 } \int _ { 0 } ^ { \sqrt { 25 - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } d x d y .


A) 1963.51963.5
B) 15.7115.71
C) 4908.744908.74
D) 39.2739.27
E) 625

Correct Answer

verifed

verified

Use polar coordinates to evaluate 3309x2sin(x2+y2)dxdy\int _ { - 3 } ^ { 3 } \int _ { 0 } ^ { \sqrt { 9 - x ^ { 2 } } } \sin \left( x ^ { 2 } + y ^ { 2 } \right) d x d y

Correct Answer

verifed

verified

Evaluate the double integral by first identifying it as the volume of a solid. R(152x) dA,R={(x,y) 2x5,3y8}\iint _ { R } ( 15 - 2 x ) d A , R = \{ ( x , y ) \mid 2 \leq x \leq 5,3 \leq y \leq 8 \}


A) 300
B) 100- 100
C) 0
D) 200
E) 100

Correct Answer

verifed

verified

Evaluate Tf(x,y,z)dV\iiint _ { T } f ( x , y , z ) d V where f(x,y,z)=7yf ( x , y , z ) = 7 y and TT is the region bounded by the paraboloid y=x2+z2y = x ^ { 2 } + z ^ { 2 } and the plane y=1y = 1 .

Correct Answer

verifed

verified

Estimate the volume of the solid that lies above the square R=[0,4]×[0,4]R = [ 0,4 ] \times [ 0,4 ] and below the elliptic paraboloid f(x,y)=68x2y2f ( x , y ) = 68 - x ^ { 2 } - y ^ { 2 } . Divide RR into four equal squares and use the Midpoint rule.

Correct Answer

verifed

verified

Find the volume of the solid bounded in the first octanat bounded by the cylinder z=9y2z = 9 - y ^ { 2 } and the planes x=1x = 1 .

Correct Answer

verifed

verified

 Use cylindrical coordinates to evaluate 2204x2016x2y2zdzdydx\text { Use cylindrical coordinates to evaluate } \int _ { - 2 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { 0 } ^ { \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } } z d z d y d x \text {. }

Correct Answer

verifed

verified

 Find the area of the surface. The part of the sphere x2+y2+z2=49 that lies above the plane z=1\text { Find the area of the surface. The part of the sphere } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49 \text { that lies above the plane } z = 1 \text {. }

Correct Answer

verifed

verified

Calculate the iterated integral. 0x0101y28ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 8 y \sin x d z d y d x

Correct Answer

verifed

verified

Showing 141 - 159 of 159

Related Exams

Show Answer