Filters
Question type

Find the mass of the solid in the first octant bounded by the coordinate planes and the plane x+4y+z=4x + 4 y + z = 4 , where the density is equal to the distance from the xz-plane.

Correct Answer

verifed

verified

Find the area enclosed in one petal of r=sin(3θ)r = \sin ( 3 \theta )

Correct Answer

verifed

verified

Find the area enclosed in one petal of r=sin(5θ) r = \sin ( 5 \theta )


A) π15\frac { \pi } { 15 }
B) π20\frac { \pi } { 20 }
C) π25\frac { \pi } { 25 }
D) π30\frac { \pi } { 30 }

Correct Answer

verifed

verified

Give the rectangular coordinates for the point with the spherical coordinates (4,π6,π4) \left( 4 , \frac { \pi } { 6 } , \frac { \pi } { 4 } \right)


A) (6,6,22) ( \sqrt { 6 } , \sqrt { 6 } , 2 \sqrt { 2 } )
B) (6,26,2) ( \sqrt { 6 } , 2 \sqrt { 6 } , \sqrt { 2 } )
C) (26,26,22) ( 2 \sqrt { 6 } , 2 \sqrt { 6 } , 2 \sqrt { 2 } )
D) (6,2,22) ( \sqrt { 6 } , \sqrt { 2 } , 2 \sqrt { 2 } )

Correct Answer

verifed

verified

Let T be the triangle with vertices (0, 0) , (2, 4) , and (2, 0) . Let the density at each point of T be equal to the point's distance from the x-axis. Find MyM _ { y } for T.


A) 323\frac { 32 } { 3 }
B) 1616
C) 88
D) 44

Correct Answer

verifed

verified

Find the (signed) volume of the solid bounded by the given function over the specified region Ω\Omega . f(x,y)=xy2f ( x , y ) = x y ^ { 2 } and Ω={(x,y):x2+y24}\Omega = \left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq 4 \right\}

Correct Answer

verifed

verified

Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 11x21f(x,y) dydx\int _ { - 1 } ^ { 1 } \int _ { x ^ { 2 } } ^ { 1 } f ( x , y ) d y d x


A) 01yyf(x,y) dxdy\int _ { 0 } ^ { 1 } \int _ { - \sqrt { y } } ^ { \sqrt { y } } f ( x , y ) d x d y
B) 110yf(x,y) dxdy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { y } } f ( x , y ) d x d y
C) 010yf(x,y) dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { y } } f ( x , y ) d x d y
D) 11y2y2f(x,y) dxdy\int _ { - 1 } ^ { 1 } \int _ { - y ^ { 2 } } ^ { y ^ { 2 } } f ( x , y ) d x d y

Correct Answer

verifed

verified

Give the iterated integral as an iterated integral or sum of iterated integrals in the opposite order of integration. 01xxf(x,y)dydx\int _ { 0 } ^ { 1 } \int _ { - x } ^ { x } f ( x , y ) d y d x

Correct Answer

verifed

verified

Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to XX , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}

Correct Answer

verifed

verified

Evaluate the following Rxysin(z)dV\iiint _ { R } x y \sin ( z ) d V , where R={(x,y,z):0x1,0y2, and 0zπ2}R = \left\{ ( x , y , z ) : 0 \leq x \leq 1,0 \leq y \leq 2 , \text { and } 0 \leq z \leq \frac { \pi } { 2 } \right\}

Correct Answer

verifed

verified

Evaluate the sum i=12j=13ij\sum _ { i = 1 } ^ { 2 } \sum _ { j = 1 } ^ { 3 } i j

Correct Answer

verifed

verified

Evaluate the integral 012xx2xydydx\int _ { 0 } ^ { 1 } \int _ { 2 x } ^ { x ^ { 2 } } x y d y d x

Correct Answer

verifed

verified

Give the rectangular coordinates for the point with the spherical coordinates (3,π4,arccos(13))\left( \sqrt { 3 } , \frac { \pi } { 4 } , \arccos \left( \frac { 1 } { \sqrt { 3 } } \right) \right)

Correct Answer

verifed

verified

Find the mass of the solid whose density is equal to twice the distance from the origin, which is outside the sphere of radius 3 and inside the sphere of radius 5.


A) 544π544 \pi
B) 1088π1088 \pi
C) 272π272 \pi
D) 136π136 \pi

Correct Answer

verifed

verified

Set up Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral (or more, if necessary) where you integrate first with respect to XX , where R={(x,y):0x2 and 0y2x}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 0 \leq \mathrm { y } \leq 2 x \}

Correct Answer

verifed

verified

Write the cylindrical equation r=16r = 16 in rectangular coordinates.

Correct Answer

verifed

verified

Let D be the upper half of the unit disk. Assume it has density ρ(x,y)=x2+y2\rho ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } Find the mass of D.

Correct Answer

verifed

verified

Evaluate the double integral Rx2ydA\iint _ { R } \frac { x ^ { 2 } } { y } d A where R={(x,y):0x2 and 1ye}R = \{ ( x , y ) : 0 \leq x \leq 2 \text { and } 1 \leq \mathrm { y } \leq e \}

Correct Answer

verifed

verified

Set up the double integral R(y2x) 3dA\iint _ { R } ( y - 2 x ) ^ { 3 } d A over the parallelogram with vertices (2, 1) , (3, 3) , (5, 2) , and (6, 4) using the transformation u=yx3v=y2x\begin{array} { l } u = y - \frac { x } { 3 } \\v = y - 2 x\end{array}


A) 13283v3dvdu\int _ { \frac { 1 } { 3 } } ^ { 2 } \int _ { - 8 } ^ { - 3 } v ^ { 3 } d v d u
B) 3513283v3dvdu\frac { 3 } { 5 } \int _ { \frac { 1 } { 3 } } ^ { 2 } \int _ { - 8 } ^ { - 3 } v ^ { 3 } d v d u
C) 13283u3dvdu\int _ { \frac { 1 } { 3 } } ^ { 2 } \int _ { - 8 } ^ { - 3 } u ^ { 3 } d v d u
D) 5313283v3dvdu\frac { 5 } { 3 } \int _ { \frac { 1 } { 3 } } ^ { 2 } \int _ { - 8 } ^ { - 3 } v ^ { 3 } d v d u

Correct Answer

verifed

verified

Give the cylindrical coordinates for the point with the rectangular coordinates (1,1,1)( 1,1,1 )

Correct Answer

verifed

verified

Showing 21 - 40 of 84

Related Exams

Show Answer