Filters
Question type

For the functions f(x)=1x2f ( x ) = \frac { 1 } { x - 2 } and g(x)=xx1g ( x ) = \frac { x } { x - 1 } , find f+gf + g , fgf - g , fg\mathrm { fg } , fg\frac { f } { g } and their domains. Answer f+g=1x2+xx1=x2x1(x2)(x1)f + g = \frac { 1 } { x - 2 } + \frac { x } { x - 1 } = \frac { x ^ { 2 } - x - 1 } { ( x - 2 ) ( x - 1 ) } \quad domain: (,1)(1,2)(2,)( - \infty , 1 ) \cup ( 1,2 ) \cup ( 2 , \infty ) fg=1x2xx1=x23x+1(x2)(x1) domain: (,1)(1,2)(2,)fg=(1x2)(xx1)=x(x1)(x2) domain: (,1)(1,2)(2,)fg=(x1)(x2)x domain: (,0)(0,1)(1,2)(2,)\begin{array} { l l } f - g = \frac { 1 } { x - 2 } - \frac { x } { x - 1 } = - \frac { x ^ { 2 } - 3 x + 1 } { ( x - 2 ) ( x - 1 ) } & \text { domain: } ( - \infty , 1 ) \cup ( 1,2 ) \cup ( 2 , \infty ) \\f g = \left( \frac { 1 } { x - 2 } \right) \left( \frac { x } { x - 1 } \right) = \frac { x } { ( x - 1 ) ( x - 2 ) } & \text { domain: } ( - \infty , 1 ) \cup ( 1,2 ) \cup ( 2 , \infty ) \\\frac { f } { g } = \frac { ( x - 1 ) } { ( x - 2 ) x } & \text { domain: } ( - \infty , 0 ) \cup ( 0,1 ) \cup ( 1,2 ) \cup ( 2 , \infty )\end{array} 10. Given f(x)=2x2f ( x ) = 2 x - 2 and g(x)=2x2g ( x ) = 2 x ^ { 2 } , find (gf)(1)( g \circ f ) ( - 1 ) .

Correct Answer

verifed

verified

Let f(x)=2x1f ( x ) = 2 x - 1 . (a) Sketch the graph of ff . (b) Find the domain of ff . (c) State the intervals on which ff is increasing and on which ff is decreasing.

Correct Answer

verifed

verified

(a) blured image
(b) D...

View Answer

Find the inverse function of f(x)=3(x+1)2f ( x ) = 3 ( x + 1 ) ^ { 2 } , x<1x < - 1 .

Correct Answer

verifed

verified

blured image blured image blured image blured image blured image , but...

View Answer

Determine whether or not the function g(x)=1x2,x0g ( x ) = 1 - x ^ { 2 } , x \geq 0 is one-to-one.

Correct Answer

verifed

verified

blured image
Two different positive numbers cannot h...

View Answer

Let f(x)=3x+1f ( x ) = 3 x + 1 and g(x)=3x22x+1g ( x ) = 3 x ^ { 2 } - 2 x + 1 . Find fgf - g , fg\mathrm { fg } , and their domains.

Correct Answer

verifed

verified

blured image , domain ...

View Answer

Graphs of the functions f and g are given. (a) Which is larger, f(3) or g(3)?f ( - 3 ) \text { or } g ( 3 ) ? (b) Which is larger, f(1) or g(1)?f ( - 1 ) \text { or } g ( - 1 ) ? (c) For which values of x is f(x)=g(x)?f ( x ) = g ( x ) ?  Graphs of the functions f and g are given. (a) Which is larger,  f ( - 3 ) \text { or } g ( 3 ) ?  (b) Which is larger,  f ( - 1 ) \text { or } g ( - 1 ) ?  (c) For which values of x is  f ( x ) = g ( x ) ?

Correct Answer

verifed

verified

Find the inverse function of f(x)=21xf ( x ) = 2 - \frac { 1 } { x } , x0x \neq 0 .

Correct Answer

verifed

verified

If f(x)=2x2+xf ( x ) = 2 x ^ { 2 } + x and g(x)=3x1g ( x ) = 3 x - 1 , find f+gf + g , fgf - g , and their domains.

Correct Answer

verifed

verified

blured image , domain ...

View Answer

Given f(x)=1xf ( x ) = \frac { 1 } { x } , g(x)=xx+1g ( x ) = \frac { x } { x + 1 } , and h(x)=x+1xh ( x ) = \frac { x + 1 } { x } , find fghf \circ g \circ h .

Correct Answer

verifed

verified

If f(x)=22xf ( x ) = \sqrt { 2 - 2 x } and g(x)=x21g ( x ) = \sqrt { x ^ { 2 } - 1 } , find f+gf + g , fg\mathrm { fg } , and their domains.

Correct Answer

verifed

verified

blured image , domain ...

View Answer

If f(x)=2x2+1f ( x ) = 2 x ^ { 2 } + 1 and g(x)=x1g ( x ) = x - 1 , find f+gf + g , fg\mathrm { fg } , and their domains.

Correct Answer

verifed

verified

blured image , domain ...

View Answer

Let f(x)=3+x2f ( x ) = 3 + x ^ { 2 } , 0x50 \leq x \leq 5 (a) Sketch the graph of ff then use it to sketch the graph of f1f ^ { - 1 } . (b) Find f1f ^ { - 1 } .

Correct Answer

verifed

verified

blured image blured image blured image . So th...

View Answer

Let f(x)=xx2f ( x ) = - \frac { | x | } { x ^ { 2 } } . (a) Sketch the graph of ff . (b) Find the domain and the range of ff .

Correct Answer

verifed

verified

(a) blured image
(b) D...

View Answer

Determine whether or not the function h(x)=x3xh ( x ) = x ^ { 3 } - x is one-to-one.

Correct Answer

verifed

verified

blured image
is not one-to-one, or sketch ...

View Answer

A function is given. (a) Find all the local maximum and minimum values of the function and the value of x at which each occurs. (b) Find the intervals on which the function is increasing and on which the function is decreasing. State all answers correct to two decimal places. G(x)=2x2+x+1G ( x ) = \frac { 2 } { x ^ { 2 } + x + 1 }

Correct Answer

verifed

verified

(a) local maximum blured image w...

View Answer

A man is running around a circular track that is 200 m in circumference. An observer uses a stopwatch to record the runner's time at the end of each lap, obtaining the data in the following table. What was the man's average speed (rate) between 108 s and 203 s? Round the answer to two decimal places.  Time (s)  Distance (m)32200684001086001528002031000263120033514004121600\begin{array} { | c | c | } \hline \text { Time (s) } & \begin{array} { c } \text { Distance } \\( \mathrm { m } )\end{array} \\\hline 32 & 200 \\\hline 68 & 400 \\\hline 108 & 600 \\\hline 152 & 800 \\\hline 203 & 1000 \\\hline 263 & 1200 \\\hline 335 & 1400 \\\hline 412 & 1600 \\\hline\end{array}

Correct Answer

verifed

verified

Sketch the graph of the piecewise-defined function. f(x)={x2 if x1x2 if x>1f ( x ) = \left\{ \begin{array} { l l } x ^ { 2 } & \text { if } | x | \leq 1 \\- x ^ { 2 } & \text { if } | x | > 1\end{array} \right.

Correct Answer

verifed

verified

A function is given. Use a graphing calculator to draw the graph of f. Find the domain and range of f from the graph. f(x)=x2,3x5f ( x ) = x ^ { 2 } , \quad - 3 \leq x \leq 5

Correct Answer

verifed

verified

For the function f(x)=2x21f ( x ) = 2 x ^ { 2 } - 1 , find f(x+1)f ( x + 1 ) and f(x)+1f ( x ) + 1 .

Correct Answer

verifed

verified

Determine whether the given curve is the graph of a function of xx . If it is, state the domain and range of the function.  Determine whether the given curve is the graph of a function of  x  . If it is, state the domain and range of the function.   A)  Function, domain:  ( - \infty , - 2 )  \cup ( - 2 , \infty )   , range:  [ 2 , \infty )   B)  Function, domain:  ( - \infty , - 2 )  \cup ( 2 , \infty )   , range:  [ - 2 , \infty )   C)  Function, domain:  ( - \infty , 0 )   , range:  [ 2 , \infty )   D)  Function, domain:  ( - \infty , - 2 )  \cup ( 0 , \infty )   , range:  [ - 2 , \infty )   E)  Not a function


A) Function, domain: (,2) (2,) ( - \infty , - 2 ) \cup ( - 2 , \infty ) , range:
[2,) [ 2 , \infty )
B) Function, domain: (,2) (2,) ( - \infty , - 2 ) \cup ( 2 , \infty ) , range:
[2,) [ - 2 , \infty )
C) Function, domain: (,0) ( - \infty , 0 ) , range:
[2,) [ 2 , \infty )
D) Function, domain: (,2) (0,) ( - \infty , - 2 ) \cup ( 0 , \infty ) , range:
[2,) [ - 2 , \infty )
E) Not a function

Correct Answer

verifed

verified

Showing 41 - 60 of 98

Related Exams

Show Answer