Filters
Question type

Study Flashcards

When solving a linear programming problem, a decision variable that leaves the basis in one iteration of the simplex method can return to the basis on a later iteration.

Correct Answer

verifed

verified

The simplex method is a general mathematical solution technique for solving ________ programming problems.


A) integer
B) non-linear
C) linear
D) A, B, and C

Correct Answer

verifed

verified

C

Given the following linear programming problem: maximizeZ=$100x1+80x2 subject to x1+2x2403x1+x260x1,x20\begin{array} { l l } \operatorname { maximize } & \mathrm { Z } = \$ 100 x _ { 1 } + 80 x _ { 2 } \\\text { subject to } & x _ { 1 } + 2 x _ { 2 } \leq 40 \\& 3 x _ { 1 } + x _ { 2 } \leq 60 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array} Using the simplex method, what is the optimal value for the objective function?

Correct Answer

verifed

verified

Consider the following linear programming problem:  MAX Z=10x1+30x2 s.t. 4x1+6x2128x1+4x216\begin{array} { l l } \text { MAX } & \mathrm { Z } = 10 x _ { 1 } + 30 x _ { 2 } \\\text { s.t. } & 4 x _ { 1 } + 6 x _ { 2 } \leq 12 \\& 8 x _ { 1 } + 4 x _ { 2 } \leq 16\end{array} Use the two tables below to create the initial tableau and perform 1 pivot.  Consider the following linear programming problem:  \begin{array} { l l }  \text { MAX } & \mathrm { Z } = 10 x _ { 1 } + 30 x _ { 2 } \\ \text { s.t. } & 4 x _ { 1 } + 6 x _ { 2 } \leq 12 \\ & 8 x _ { 1 } + 4 x _ { 2 } \leq 16 \end{array}   Use the two tables below to create the initial tableau and perform 1 pivot.          Consider the following linear programming problem:  \begin{array} { l l }  \text { MAX } & \mathrm { Z } = 10 x _ { 1 } + 30 x _ { 2 } \\ \text { s.t. } & 4 x _ { 1 } + 6 x _ { 2 } \leq 12 \\ & 8 x _ { 1 } + 4 x _ { 2 } \leq 16 \end{array}   Use the two tables below to create the initial tableau and perform 1 pivot.

Correct Answer

verifed

verified

Artificial variables are added to constraints and represent unused resources.

Correct Answer

verifed

verified

The simplex method cannot be used to solve quadratic programming problems.

Correct Answer

verifed

verified

Slack variables are added to constraints and represent unused resources.

Correct Answer

verifed

verified

In solving a linear programming problem with simplex method, the number of basic variables is the same as the number of constraints in the original problem

Correct Answer

verifed

verified

Given the following linear programming problem: maximize4x1+3x2 subject to 4x1+3x2235x1x25x1,x20\begin{array} { l l } \operatorname { maximize } & 4 x _ { 1 } + 3 x _ { 2 } \\\text { subject to } & 4 x _ { 1 } + 3 x _ { 2 } \leq 23 \\& 5 x _ { 1 } - x _ { 2 } \leq 5 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array} What is the value of x2 in the final tableau?

Correct Answer

verifed

verified

The simplex method is a general mathematical solution technique for solving linear programming problems.

Correct Answer

verifed

verified

True

Consider the following linear programming problem and the corresponding final tableau.  MAX Z=3x1+5x2 s.t. x142x2123x1+2x218\begin{array} { l l } \text { MAX } & Z = 3 x _ { 1 } + 5 x _ { 2 } \\\text { s.t. } & x _ { 1 } \leq 4 \\& 2 x _ { 2 } \leq 12 \\& 3 x _ { 1 } + 2 x _ { 2 } \geq 18\end{array}  Consider the following linear programming problem and the corresponding final tableau.  \begin{array} { l l }  \text { MAX } & Z = 3 x _ { 1 } + 5 x _ { 2 } \\ \text { s.t. } & x _ { 1 } \leq 4 \\ & 2 x _ { 2 } \leq 12 \\ & 3 x _ { 1 } + 2 x _ { 2 } \geq 18 \end{array}      What is the shadow price for each constraint? What is the shadow price for each constraint?

Correct Answer

verifed

verified

constraint 1, 3; constraint 2, 2.5; constraint 3, 0

Solve the following problem using the simplex method.  Minimize Z=2x1+6x2 Subject to: 2x1+4x2123x1+2x29x1,x20\begin{array} { l } \text { Minimize } \mathrm { Z } = 2 x _ { 1 } + 6 x _ { 2 } \\\text { Subject to: } \quad 2 x _ { 1 } + 4 x _ { 2 } \leq 12 \\\qquad 3 x _ { 1 } + 2 x _ { 2 } \geq 9 \\x _ { 1 } , x _ { 2 } \geq 0\end{array}

Correct Answer

verifed

verified

x1 = 1.5,...

View Answer

The simplex method does not guarantee an integer solution.

Correct Answer

verifed

verified

The ________ step in solving a linear programming model manually with the simplex method is to convert the model into standard form.


A) first
B) second
C) last
D) only

Correct Answer

verifed

verified

The leaving variable is determined by dividing the quantity values by the pivot column values and selecting the


A) maximum positive value.
B) minimum negative value.
C) minimum positive value.
D) maximum negative value.

Correct Answer

verifed

verified

________ in linear programming is when a basic variable takes on a value of zero (i.e., a zero in the right-hand side of the constraints of the tableau).

Correct Answer

verifed

verified

If the primal problem has three constraints, then the corresponding dual problem will have three ________.

Correct Answer

verifed

verified

Write the dual form of the following linear program.  MAX Z=3x1+5x2 s.t. x142x2123x1+2x218\begin{array} { l l } \text { MAX } & \mathrm { Z } = 3 x _ { 1 } + 5 x _ { 2 } \\\text { s.t. } & x _ { 1 } \leq 4 \\& 2 x _ { 2 } \leq 12 \\& 3 x _ { 1 } + 2 x _ { 2 } \geq 18\end{array}

Correct Answer

verifed

verified

MIN Zd = 4y1 + 12y2 ...

View Answer

Row operations are used to solve simultaneous equations where equations are multiplied by constants and added or subtracted from each other.

Correct Answer

verifed

verified

Given the following linear programming problem: maximize4x1+3x2 subject to 4x1+3x2235x1x25x1,x20\begin{array} { l l } \operatorname { maximize } & 4 x _ { 1 } + 3 x _ { 2 } \\\text { subject to } & 4 x _ { 1 } + 3 x _ { 2 } \leq 23 \\& 5 x _ { 1 } - x _ { 2 } \leq 5 \\& x _ { 1 } , x _ { 2 } \geq 0\end{array} What is the (Ci- Zi) value for S2 at the initial solution?

Correct Answer

verifed

verified

Showing 1 - 20 of 90

Related Exams

Show Answer