Filters
Question type

Study Flashcards

The Solver report that shows the allowable ranges for objective function coefficients, allowable ranges for constraint right-hand sides, and shadow prices is called the


A) Range report.
B) Sensitivity report.
C) Parameter report.
D) Solution report.
E) Answer report.

Correct Answer

verifed

verified

A chance constraint I. Replaces the right-hand side with the minimum value. II. Allows the objective function coefficients to be replaced with random numbers. III. Ensures that the chance constraint will never be violated. IV. Can be used to model a soft constraint which can be violated at times.


A) I only
B) II only
C) III only
D) IV only
E) I and II only

Correct Answer

verifed

verified

A parameter analysis report can be used to easily investigate the changes in any number of data cells.

Correct Answer

verifed

verified

When even a small change in the value of a coefficient in the objective function can change the optimal solution, the coefficient is called:


A) optimal.
B) sensitive.
C) out of the range.
D) within the range.
E) None of the choices is correct.

Correct Answer

verifed

verified

Activity 1 has an objective function coefficient allowable increase of 30. Activity 2 has an objective function coefficient allowable increase of 60. If both activities objective function coefficient increases by 20, what will happen to the final values in the optimal solution?


A) The optimal solution remains the same.
B) The optimal solution may or may not remain the same.
C) The optimal solution will change.
D) The shadow prices are valid.
E) None of the choices is correct.

Correct Answer

verifed

verified

An optimal solution is only optimal with respect to a particular mathematical model that provides only a representation of the actual problem.

Correct Answer

verifed

verified

Variable cells  Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array} Constraints  Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array} If the objective coefficients of Activity 2 and Activity 3 are both decreased by $100, then:


A) the optimal solution remains the same.
B) the optimal solution may or may not remain the same.
C) the optimal solution will change.
D) the shadow prices are valid.
E) None of the choices is correct.

Correct Answer

verifed

verified

Variable cells  Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array} Constraints  Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array} If the coefficient for Activity 2 in the objective function changes to $400, then the objective function value:


A) will increase by $7,500.
B) will increase by $2,750.
C) will increase by $100.
D) will remain the same.
E) can only be discovered by resolving the problem.

Correct Answer

verifed

verified

Variable cells  Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array} Constraints  Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array} If the coefficient of Activity 2 in the objective function changes to $100, then:


A) the original solution remains optimal.
B) the problem must be resolved to find the optimal solution.
C) the shadow price is valid.
D) the shadow price is not valid.
E) None of the choices is correct.

Correct Answer

verifed

verified

Variable cells  Cell  Name  Final  Value  Reduced  Cost  Objective  Coefficient  Allowable  Increase  Allowable  Decrease $B$6 Activity 1 04255001E+30425$C$6 Activity 2 27.50.0300500300$D$ Activity 3 02504001E+30250\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Reduced } \\\text { Cost }\end{array} & \begin{array}{c}\text { Objective } \\\text { Coefficient }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{B} \$ 6 & \text { Activity 1 } & 0 & 425 & 500 & 1 \mathrm{E}+30 & 425 \\\hline \$ \mathrm{C} \$ 6 & \text { Activity 2 } & 27.5 & 0.0 & 300 & 500 & 300 \\\hline \$ \mathrm{D} \$ & \text { Activity 3 } & 0 & 250 & 400 & 1 \mathrm{E}+30 & 250 \\\hline\end{array} Constraints  Cell  Name  Final  Value  Shadow  Price  Constraint  R.H. Side  Allowable  Increase  Allowable  Decrease $E$2 Benefit A 110060501E+3C$E$3 Benefit B 110751101E+3046$E$4 Benefit C 137.508057.51E+30\begin{array}{|r|r|r|r|r|r|r|}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\\text { Value }\end{array} & \begin{array}{c}\text { Shadow } \\\text { Price }\end{array} & \begin{array}{c}\text { Constraint } \\\text { R.H. Side }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Increase }\end{array} & \begin{array}{c}\text { Allowable } \\\text { Decrease }\end{array} \\\hline \$ \mathrm{E} \$ 2 & \text { Benefit A } & 110 & 0 & 60 & 50 & 1 \mathrm{E}+3 \mathrm{C} \\\hline \$ \mathrm{E} \$ 3 & \text { Benefit B } & 110 & 75 & 110 & 1 \mathrm{E}+30 & 46 \\\hline \$\mathrm{E} \$ 4 & \text { Benefit C } & 137.5 & 0 & 80 & 57.5 & 1 \mathrm{E}+30 \\\hline\end{array} If the right-hand side of Resource C is increased by 40, and the right-hand side of Resource B is decreased by 20, then:


A) the optimal solution remains the same.
B) the optimal solution will change.
C) the shadow price is valid.
D) the shadow price may or may not be not valid.
E) None of the choices is correct.

Correct Answer

verifed

verified

To determine if an increase in an objective function coefficient will lead to a change in final values for decision variables, an analyst can do which of the following? I. Compare the increase in the objective function coefficient to the allowable decrease. II. Compare the increase in the objective function coefficient to the allowable increase. III. Rerun the optimization to see if the final values change.


A) I only.
B) II only.
C) III only.
D) I and III only.
E) II and III only.

Correct Answer

verifed

verified

If the optimal solution will remain the same over a wide range of values for a particular coefficient in the objective function, then management will want to take special care to narrow this estimate down.

Correct Answer

verifed

verified

A shadow price reflects which of the following in a maximization problem?


A) The marginal cost of adding additional resources.
B) The marginal gain in the objective value realized by adding one unit of a resource.
C) The marginal loss in the objective value realized by adding one unit of a resource.
D) The marginal gain in the objective value realized by subtracting one unit of a resource.
E) None of the choices is correct.

Correct Answer

verifed

verified

In robust optimization, what is meant by the term "soft constraint"?


A) A constraint that is not violated.
B) A constraint that has a shadow price of zero.
C) A constraint that can be violated slightly without serious repercussions.
D) A constraint that can be violated dramatically without serious repercussions.
E) A constraint that cannot be violated.

Correct Answer

verifed

verified

Note: This question requires access to Solver. In the following linear programming problem, how much would the firm be willing to pay for an additional 5 units of Resource A? Maximize P=3x+15yP = 3 x + 15 y subject to 2x+4y12\quad 2 x + 4 y \leq 12 (Resource A) 5x+2y105 x + 2 y \leq 10 (Resource B) and x0,y0\quad x \geq 0 , y \geq 0 .


A) It is impossible to determine.
B) 7.50
C) 11.25
D) 15
E) 18.75

Correct Answer

verifed

verified

Showing 61 - 75 of 75

Related Exams

Show Answer