Asked by

Jillian Sperico
on Oct 13, 2024

verifed

Verified

You roll a fair die.If you get a number greater than 4,you win $70.If not,you get to roll again.If you get a number greater than 4 the second time,you win $30.Otherwise you win nothing. Create a probability model for the amount you win at this game.

A)  Amount won $70$30$0 P(Amount won)  268361636\begin{array} { l | c c c } \text { Amount won } & \$ 70 & \$ 30 & \$ 0 \\\hline \text { P(Amount won) } & \frac { 2 } { 6 } & \frac { 8 } { 36 } & \frac { 16 } { 36 }\end{array} Amount won  P(Amount won)  $7062$30368$03616
B)  Amount won $100$70$30$0P (Amount won)  4368368361636\begin{array} { l | c c c c } \text { Amount won } & \$ 100 & \$ 70 & \$ 30 & \$ 0 \\\hline \mathrm { P } \text { (Amount won) } & \frac { 4 } { 36 } & \frac { 8 } { 36 } & \frac { 8 } { 36 } & \frac { 16 } { 36 }\end{array} Amount won P (Amount won)  $100364$70368$30368$03616
C)  Amount won $70$30$0P (Amount won)  262626\begin{array} { l | c c c } \text { Amount won } & \$ 70 & \$ 30 & \$ 0 \\\hline \mathrm { P } \text { (Amount won) } & \frac { 2 } { 6 } & \frac { 2 } { 6 } & \frac { 2 } { 6 }\end{array} Amount won P (Amount won)  $7062$3062$062
D)  Amount won $100$70$30$0P (Amount won)  4362362361636\begin{array} { l | c c c c } \text { Amount won } & \$ 100 & \$ 70 & \$ 30 & \$ 0 \\\hline \mathrm { P } \text { (Amount won) } & \frac { 4 } { 36 } & \frac { 2 } { 36 } & \frac { 2 } { 36 } & \frac { 16 } { 36 }\end{array} Amount won P (Amount won)  $100364$70362$30362$03616
E)  Amount won $70$30 P(Amount won)  2646\begin{array} { l | c c } \text { Amount won } & \$ 70 & \$ 30 \\\hline \text { P(Amount won) } & \frac { 2 } { 6 } & \frac { 4 } { 6 }\end{array} Amount won  P(Amount won)  $7062$3064

Probability Model

A mathematical representation that defines the likelihood of various outcomes in a random process.

Fair Die

A die that has an equal chance of landing on any of its faces when thrown.

  • Attain the ability to generate probability models for assorted situations.
  • Develop an understanding of the concepts pertaining to independent and dependent events in probability.
verifed

Verified Answer

AR
Angela Reji PhilipOct 18, 2024
Final Answer:
Get Full Answer